Kernel Distributionally Robust OptimizationΒΆ

This is not MMD-DRO. Instead, we still define DRO ambiguity sets through standard DRO models, while the model class is set beyond the kernel feature.

[2]:
from dro.linear_model.wasserstein_dro import *
from dro.data.dataloader_regression import regression_basic
from dro.data.dataloader_classification import classification_basic
from dro.data.draw_utils import draw_classification

feature_dim = 2
X, y = classification_basic(d = feature_dim, num_samples = 500, radius = 3, visualize = False)


#draw_classification(X, y, title = 'Raw Data')
kernel_clf_model = WassersteinDRO(input_dim = feature_dim, model_type = 'svm', kernel = 'rbf')
kernel_clf_model.update_kernel({'metric': 'poly', 'kernel_gamma': 1})
kernel_clf_model.update({'eps': .1})
params = kernel_clf_model.fit(X, y)

[3]:
from dro.linear_model.chi2_dro import *
from dro.linear_model.kl_dro import *
from dro.linear_model.tv_dro import *
from dro.linear_model.cvar_dro import *
from dro.linear_model.marginal_dro import *
from dro.linear_model.conditional_dro import *

kernel_clf_model = Chi2DRO(input_dim = feature_dim, model_type = 'svm', kernel = 'poly')
kernel_clf_model.update({'eps': 10})
params = kernel_clf_model.fit(X, y)

kernel_clf_model = KLDRO(input_dim = feature_dim, model_type = 'svm', kernel = 'rbf')
kernel_clf_model.update({'eps': 2})
params = kernel_clf_model.fit(X, y)

kernel_clf_model = CVaRDRO(input_dim = feature_dim, model_type = 'logistic', kernel = 'sigmoid')
kernel_clf_model.update({'alpha': 0.9})
params = kernel_clf_model.fit(X, y)

kernel_clf_model = TVDRO(input_dim = feature_dim, model_type = 'logistic', kernel = 'poly')
kernel_clf_model.update({'eps': 0.01})
params = kernel_clf_model.fit(X, y)



[5]:
kernel_clf_model = MarginalCVaRDRO(input_dim = feature_dim, model_type = 'svm', kernel = 'poly')
kernel_clf_model.update({'alpha': 0.9})
params = kernel_clf_model.fit(X, y)
kernel_clf_model.score(X,y)
/Users/jiashuo/anaconda3/envs/llm-ot/lib/python3.10/site-packages/cvxpy/expressions/expression.py:674: UserWarning:
This use of ``*`` has resulted in matrix multiplication.
Using ``*`` for matrix multiplication has been deprecated since CVXPY 1.1.
    Use ``*`` for matrix-scalar and vector-scalar multiplication.
    Use ``@`` for matrix-matrix and matrix-vector multiplication.
    Use ``multiply`` for elementwise multiplication.
This code path has been hit 2 times so far.

  warnings.warn(msg, UserWarning)
[5]:
(0.986, 0.9859994959818553)
[6]:
from sklearn.svm import SVC
from dro.data.dataloader_regression import regression_basic
from dro.data.dataloader_classification import classification_basic
from dro.data.draw_utils import draw_classification

feature_dim = 5
X, y = classification_basic(d = feature_dim, num_samples = 25, radius = 3, visualize = False)

clf = SVC(kernel = 'rbf', C = 100000000)
clf.fit(X, y)
print('coef', clf.dual_coef_, clf.support_vectors_, clf.intercept_)
coef [[-0.25769266 -0.64158585 -3.57086163 -0.78030986 -0.43010956 -0.01490551
   0.76823835  0.16369363  1.56160661  1.47227558  0.03362333  1.69602757]] [[ 0.38846926 -0.7028592   1.35277704  0.69878398 -2.12650133]
 [ 2.31753572 -0.46290575  1.17834297  1.18731603 -0.94596622]
 [ 0.25018034  1.61514873  1.09731754  1.55435329  0.42096142]
 [-0.3689567  -0.02826586 -0.84885536  1.28387817 -0.20472226]
 [ 0.13204275 -0.69776822  2.16793699  2.95568251 -2.16462365]
 [ 1.78316707 -1.07634697  0.80160239  2.94332765  0.57396163]
 [-0.00613887  4.01699229  1.16884802  0.82769028 -1.76806615]
 [ 0.45436803  2.56600279  0.90566671 -0.6451926  -1.13588996]
 [-2.28630569  2.45244185  1.26490427  1.72628874  0.65931799]
 [-0.06598713  2.44424396  0.03599602  0.40586944  1.60361199]
 [ 0.42349747  1.56956827  2.60746837 -2.13880444  1.43853605]
 [ 1.82292115  1.4884194   0.63837633 -0.63730201  0.3482033 ]] [0.47099307]
[7]:
feature_dim = 5
X, y = regression_basic(num_samples = 20, d = feature_dim, noise = 1)

reg_model = WassersteinDRO(input_dim = feature_dim, model_type = 'lad', kernel = 'rbf')

reg_model.update_kernel({'metric': 'rbf'})
reg_model.update({'eps': 1})
reg_model.fit(X, y)
[7]:
{'theta': [28.183849164084634,
  -40.587191522263076,
  -25.771734799878164,
  24.507949490371534,
  -20.773407080679252,
  -32.97201768430408,
  3.720089369558843,
  -71.2805334354158,
  70.95668207216211,
  -50.90241684443111,
  41.142825176686436,
  -57.152569382263984,
  57.59235347448549,
  48.59610303450425,
  26.428015099762195,
  -0.05635013918886693,
  9.225598822381361,
  -40.7058061185105,
  -30.048264859949104,
  19.95875895029569],
 'b': array(-37.78937028)}